Seleção de materiais resistentes à corrosão (CRA) para dutos flexíveis

Roberta Pires
Intercorr Conference, held in Búzios, 18 Maio 2016

All information contained in this document should be treated as PRIVILEGED AND CONFIDENTIAL and must not be disclosed without the express written consent of TECHNIP
Seleção de materiais resistentes à corrosão (CRA) para dutos flexíveis

Agenda

▪ An introduction to flexible pipes
▪ Material in contact with the fluid: the carcass
▪ Carcass Materials
▪ Corrosion Mechanisms
▪ Selecting the right material
▪ Carcass Corrosion Test
▪ Future conditions and its materials
An Introduction to Flexible Pipes
Types of flexible pipes

- TOPSIDE JUMPERS
- OFFLOADING RISERS
- RISERS
- FLOWLINES
- TIE-IN JUMPERS

All information contained in this document should be treated as PRIVILEGED AND CONFIDENTIAL and must not be disclosed without the express written consent of TECHNIP
Dynamic / Static application

FLEXIBLE RISER: high pressure dynamic application with Teta layer
- Armours
- Anti-wear layer
- Flat steel spiral
- Teta pressure vault
- Pressure sheath
- Carcass

FLEXIBLE FLOWLINE: static application rough bore
- Armours
- Zeta pressure vault
- Pressure sheath
- Carcass

All information contained in this document should be treated as PRIVILEGED AND CONFIDENTIAL and must not be disclosed without the express written consent of TECHNIP
Material in Contact with the Fluid: the Carcass
Material in contact with fluid: the carcass
Material in contact with fluid: the carcass

- Profiling and spiraling

1. Stainless steel strip’s entrance
2. Successive rolls to deform the strip and obtain the staple shape
3. Machine’s rotation
4. Flexible pipe’s advance

All information contained in this document should be treated as PRIVILEGED AND CONFIDENTIAL and must not be disclosed without the express written consent of TECHNIP
Material in contact with fluid: the carcass
Mechanical behavior

External pressure

- Hydrostatic collapse
 - 1 vault
 - 2 vaults
Mechanical behavior

- Installation vessel
 - Vertical Laying system
 - Pulley
Mechanical behavior
Material in contact with fluid: the carcass

- **Functions:**
 - Transport of fluids: it is in direct contact
 - Prevents:
 - Collapse due to external hydrostatic pressure during operation and installation
 - Over ovalization due to crushing during installation
 - Damage on the plastic pressure sheath with tools used for work in wells

- **Many stainless steels grades, selected regarding:**
 - Mechanical properties
 - Corrosion resistance
 - Cost
Carcass Materials
Carcass Materials

- **Austenitic stainless steels (Fe-Cr-Ni):** 16 to 26 % Cr and 7 to 22 % Ni.
 - ex.: 304, 304L (18 % Cr / 8 % Ni),
 - 316, 316L (18% Cr / 10% Ni / 2 % Mo)

- **Duplex stainless steels:** austenitic and ferritic phases.
 - ex.: 2205 = S32205 (22 % Cr / 5 % Ni / 3 % Mo)
 - 2304 = S32304 (23 % Cr / 4 % Ni)

- **Super duplex stainless steels:** duplex stainless steels + high contents of Mo, Cr and N.
 - ex.: 2507 = S32750 (25% Cr / 7 % Ni / 4 % Mo)

- **Alloy 31:** Fe-Ni-Cr-Mo alloy
Carcass Materials

No H$_2$S

- 304
- 304L
- 316L
duplex 2304 = S322304
duplex 2205 = S32205

[pH]

[Cost increase]

[Temperature increase]

[Cl]

With H$_2$S

- 316 L
duplex 2304 = S22304
duplex 2205 = S32205
super duplex 2507 = S322750

Alloy 31

[Cl]

p indication only as it varies a lot with market

All information contained in this document should be treated as PRIVILEGED AND CONFIDENTIAL and must not be disclosed without the express written consent of TECHNIP
Selecting the Right Material
Selecting the Right Material

Operator usually does not directly determine material. Operator issues a technical specification containing:
- Water composition, including chlorides, carbonates and any molecule that can affect pH
- Oil chemical composition, including H₂S and CO₂ acid gases
- Pressure,
- Temperature.

Flexible pipe manufacturer calculates fugH₂S and pH

Flexible pipe manufacturer checks its tests database and selects the right material.
Corrosion Mechanisms
Corrosion Mechanisms

<table>
<thead>
<tr>
<th>Type of corrosion</th>
<th>Aspect</th>
</tr>
</thead>
<tbody>
<tr>
<td>Uniform corrosion (general attack)</td>
<td></td>
</tr>
<tr>
<td>Localised corrosion</td>
<td></td>
</tr>
<tr>
<td>Pitting</td>
<td></td>
</tr>
<tr>
<td>Crevice</td>
<td></td>
</tr>
<tr>
<td>Intergranular</td>
<td></td>
</tr>
<tr>
<td>Stress corrosion</td>
<td></td>
</tr>
</tbody>
</table>

Not an issue

Stress Corrosion Cracking (SCC)

Intergranular Corrosion

All information contained in this document should be treated as PRIVILEGED AND CONFIDENTIAL and must not be disclosed without the express written consent of TECHNIP
Corrosion Mechanisms

<table>
<thead>
<tr>
<th>Type of corrosion</th>
<th>Aspect</th>
</tr>
</thead>
<tbody>
<tr>
<td>Uniform corrosion (general attack)</td>
<td></td>
</tr>
<tr>
<td>Localised corrosion</td>
<td></td>
</tr>
<tr>
<td>Pitting</td>
<td></td>
</tr>
<tr>
<td>Crevice</td>
<td></td>
</tr>
<tr>
<td>Intergranular</td>
<td></td>
</tr>
<tr>
<td>Stress corrosion</td>
<td></td>
</tr>
</tbody>
</table>

Pitting

All information contained in this document should be treated as PRIVILEGED AND CONFIDENTIAL and must not be disclosed without the express written consent of TECHNIP
Carcass Corrosion Test
Carcass Corrosion Test : Autoclave Tests

- **Test procedure:**
 - Samples are cut in a formed carcass
 - Residual stresses due to profiling
 - Samples contain welds
 - Exposure to the environment in autoclave
 - No electrical contact between samples: avoiding galvanic corrosion
 - Duration = 720 h
Carcass Corrosion Test: Autoclave Tests

Tack welded sample

Standard welded sample

Witness sample

All information contained in this document should be treated as PRIVILEGED AND CONFIDENTIAL and must not be disclosed without the express written consent of TECHNIP
Carcass Corrosion Test: Autoclave Tests

View of a basket with samples

View of sample holder

All information contained in this document should be treated as PRIVILEGED AND CONFIDENTIAL and must not be disclosed without the express written consent of TECHNIP.
Carcass Corrosion Test : Autoclave Tests

- **Test conditions:**
 - Test performed in deaerated deionized water ($O_2<10$ ppb): N_2 bubbling
 - Temperature
 - pH
 - $FugH_2S$
 - Chloride content
Carcass Corrosion Test: Autoclave Tests

High pressure autoclaves
Up to 1380 bar
Up to 400°C
Future Conditions and its Materials
Future Conditions and its Materials

Technip has a solution for current and future conditions

<table>
<thead>
<tr>
<th>Temperature (°C)</th>
<th>130</th>
<th>130</th>
<th>110</th>
<th>90</th>
<th>90</th>
<th>90</th>
<th>90</th>
</tr>
</thead>
<tbody>
<tr>
<td>pH</td>
<td>4,70</td>
<td>3,70</td>
<td>3,60</td>
<td>3,80</td>
<td>2,85</td>
<td>2,82</td>
<td>2,83</td>
</tr>
<tr>
<td>FugH_{2}S (mbar)</td>
<td>148</td>
<td>61</td>
<td>10</td>
<td>15</td>
<td>18</td>
<td>35</td>
<td>65</td>
</tr>
<tr>
<td>Chloride content (mg/l)</td>
<td>140300</td>
<td>123000</td>
<td>161900</td>
<td>131000</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
</tbody>
</table>

Corresponds to **1200 ppmv (!)** at 1 bar and 40°C

Real Projects covered
Future Conditions and its Materials

Developments:

Increase in carcass collapse resistance by increasing thickness and mechanical resistance while keeping as much as possible corrosion resistance.
Thank you